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Photoinduced electron transfer has proven to be a powerful s Sd-p  [Sdq [Sdq  [Sdq

technique for the study of charge injection and migration in duplex 1::2 B;‘_J:::i i‘_‘_‘:}‘i +'::;E ?_"_":"_'E
DNA.175 Steady state (strand cleavage) methods have been +___.;:\ LA Re-A +....;:\ t---A

employed to obtain relative efficiencies of charge migration over i—---ﬁ\ T---A T---A ?-"-/,\ T---A
long distance$.The dynamics of charge injection and migration L S e S e O

. ; . ) T---A T---A T---A T---A T---A
over relatively short distances has been investigated by means of . ==~ .

transient absorption spectroscopy on femtosecond-to-microsecond 1-G:C  14C GG
time scales:7 Most of the information obtained to date pertains Co_9"
to hole injection (oxidation of nucleobases). Current knowledge of Ho‘/\o -

photoinduced electron injection (reduction of nucleobases) in
systems with known doneracceptor distances is limited to
preliminary studies of the efficiency of AT dimer repair via
electron injection from a flavin nucleob&saend the picosecond  Table 1. Singlet and Cation Radical Decay Times for Sd-Linked
dynamics of electron injection to neighboring T or C bases from Hairpins?

Figure 1. Structures of synthetic DNA hairpins and the stilbenediether
linker Sd.

singlet donorg:°1° We report here the picosecond dynamics of hairpin Tg, PSP Teat, PS° hairpin 7, pSP9
electron injection in synthetic DNA hairpins from a stilbenediether 1G:C 3.0 40 G:G; 140
singlet {Sd*) electron donor to four different neighboring base pairs 11:C 0.7 26 G:G; (530)
which function as electron acceptors and the distance dependence 1T:A <05 32 G:Gg 650, (690)

of electron injection from'Sd* to thymine when the donor and 1BrU:A <05 4 G:Gs (690)

acceptor are separated by a variable number of noncanonical G:G  apgata for deoxygenated 10 M solutions of the hairpins in standard
base pairs (Figure 1. buffer excited at 340 nm with the output of a Ti-sapphire laser system with
The stilbenediether did has a fluorescence quantum yield of ~ an instrument response function of 150%®ecay of the Sd singlet state
0.2 and a decay time of 350 ps in methanol soluion, similar to MOPHEIEE ot 7 nEDecay of the 8d catton adcal montored at $25.
the values for 4,4dimethoxystilbend? Its transient absorption times in parentheses.
spectrum in methanol displays a broad maximum at 575 nm, a
singlet-state decay time of 240 ps. The transient absorption spectra o
of hairpins1T:A, 1BrU:A, 1G:C, and1l:C display a similar broad (@ D™A ” ® G, e :
maximum at 575 nm at very short decay times. This band decays AGcs \'
rapidly and is replaced by a narrower band at 525 nm that grows -1 D*-A"
and then decays. The 525-nm band is similar in shape to that of
the cation radical of 4,4dimethoxystilbene Anax = 530 nm in
acetonitrile solution) and is assigned to'St The decay times of
the 575 {Sd*) and 525 (St*) transients for these hairpins are
reported in Table 4
The energetics and kinetics of photoinduced electron transfer D-A - D-G,-T-
from !Sd* to a neighboring nucleobase is shown schematically in Figyre 2. Kinetics and thermodynamics of electron injection and charge
Figure 2a. According to Welléf, the free energy for electron  recombination. D is the stilbenediether donor. (a) A is the acceptor
injection is determined by the singlet energy and oxidation potential nucleobase for nearest neighbor quenching. (b) T is the acceptor for G:G-
of the donor stilbene and reduction potential of the acceptor Mediated electron injection.

nucleobaseAGg = —(Es + Eox) + Egn + C] and the free energy _ _ ) )
for Charge recombination by the sum of the redox potentia|s reduction pOtentIa| for T versus C instacked B-DNA. This result

hv hv
AGy Ker Ker

[AGy = Eqn — Eoy.18 Literature values ofEq, for the single is consistent with the single nucleotide reduction potentials reported

nucleotides C, T, and BrU in nonaqueous solutidhare reported by Seidel et al” and single nucleobase electron affinities calculated

in Table 2 along with calculated values BiGe and AG,, and by Wesolowski et at® However, Voituk et af° predict, on the

the experimental rate constants for electron injection and chargePasis of semiempirical AM1 calculations, that hydrogen bonding

recombination K.; and k). should stabilize the anion radical of C more than that of T and that
The larger value ofke for 1T:A versus1G:C both in our the relative stability of the two anion radicals are similar and may

experiments and those of Wan et‘are indicative of a lower ~ depend on the identity of the neighboring bases.
The larger value ofke for 1I:C versus 1G:C may reflect

*To whom correspondence should be addressed. E-mail: lewis@ dlﬁerence§ in reduction po.tentla.Is of C resulting from base pairing,
chem.northwestern.edu or wasielew@chem.northwestern.edu. the canonical G:C base pair having stronger hydrogen bonding than
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Table 2. Energetics and Dynamics of Electron Injection and
Charge Recombination

hairpin ~Epgn? -AGP kei, S71C AG,? K, 5719
1G:.C 2.36 0.12 3.3« 101 3.28 2.5x 100
11:C 2.36 0.12 1.4¢ 10%2 3.28 3.8x 10t°
1T:A 2.26 0.22 >2 x 1012 3.18 3.1x 100
1BrU:A 2.20 0.28 >2 x 1012 3.12 7.1x 100

aNucleobase reduction potential in acetonitrile solution, V vs SCE. Data
from refs 17,18° Free energies (eV) for charge separation and charge
recombination estimated using Weller's equatiSasd the singlet energy
(3.45 eV) and oxidation potential &d (0.92 V vs SCE), and an estimated
value ofC = 0.05 eV?6 ¢ Rate constant for electron injectioks(= 7s1).
d Rate constant for charge recombinatid® & rcat 1).

the I:C base pair. Bromouracil is more readily reduced than T;
however, values ofs for both 1BrU:A and1T:A are too short to
resolve with our femtosecond apparatus. The haitfsriJ:A has
the least negative value 8fG., and largest value d€; as expected
for a charge-transfer process in the Marcus inverted region.

The conjugate$5:G;—G:G,4 have one or more G:G base pairs
separating the Sd linker and poly(T:A) hairpin stem. The transient
absorption spectra @:G; andG:G3 resemble those of the linker

Sd and do not display a change in band shape on the 1 psto 10 ns

stilbenedicarboxamide-linked hairpifsThe fast rates and shallow
driving force dependence for both systems indicate that electron
and hole injection occur near the top of the Marcus curve and charge
recombination in the inverted region. Rate constants for G:G-
mediated electron injection are slower than those determined
previously for hole injection, and electron injection is limited to
shorter distances than those for hole injecioespite these
limitations, these results suggest that G:G or other mismatched or
unnatural base pairs may be used to mediate efficient long-distance
electron-transport processes in DNA.
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